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MgO/MgAl2O4 nanocatalyst was synthesized by a simple, cost-effective and rapid method and used in
biodiesel production from sunflower oil. MgAl2O4 was synthesized by combustion method at different
fuel ratios and then active phase of MgO was dispersed on the samples by impregnation method. The
nanocatalysts were characterized by XRD, FESEM, EDX, BET-BJH, TGA and FTIR analyses, so as to optimize
the concentration of urea (as fuel) in the combustion synthesis. The physicochemical properties of the
nanocatalyst confirmed the sample synthesized with fuel ratio of 1.5 has high surface area, effective mor-
phology and texture properties. Finally, in order to evaluate catalytic activity of the samples in biodiesel
production, the transesterification reaction was performed. The results indicated the catalyst prepared by
combustion synthesis with a fuel ratio of 1.5 was optimum specifications for biodiesel production. Using
this catalyst, 95% of sunflower oil was successfully converted to biodiesel. Furthermore, the optimal cat-
alyst showed relatively good reusability, making it a good choice for industrial biodiesel production.

� 2016 Published by Elsevier Ltd.
1. Introduction

Nowadays, for reasons such as concerns about greenhouse
gases, diminishing fossil fuel and crude oil resources, and soaring
global energy demands [1,2], researchers are well encouraged to
develop alternative, renewable and nontoxic fuels [3–5]. Biodiesel
has attracted many researchers because of its combustion proper-
ties that are similar to those of fossil diesel [6–8]. Fatty acid methyl
esters (FAME) are produced by transesterification of triglycerides
with methanol or esterification of free fatty acids (FFAs) with
methanol. Biodiesel is produced using either of homogeneous or
heterogeneous catalysts [9–11]. Although homogeneous catalysts
have several advantages such as high catalytic activity and mild
reaction conditions [12,13], the use of them is associated with sev-
eral problems including soap formation [14]. Unlike homogeneous
catalysts, heterogeneous variants are recyclable, i.e. they can be
reused several times, leading to better separation of the final
product [15–17]. However, heterogeneous catalysts can address
associated problems with homogeneous catalysts [18–20].
Heterogeneous solid acid catalysts such as SO4
2�/ZnO [17],

SO3H-ZnAl2O4 [21], WO3/ZrO2 [22] and Zr-MOFs [23] can be used
in both transesterification and esterification reactions [24]. How-
ever, for complete conversion to biodiesel, acid catalysts require
high alcohol-to-oil molar ratios, high catalyst concentrations, and
longer reaction times to achieve satisfactory transesterification
conversions [14,17]. Even though the performances of solid acid
catalysts are still inferior compared to the solid base catalysts
when it comes to transesterification reaction [1], they are still suit-
able for esterification reaction. For this reason, a variety of hetero-
geneous solid base catalysts have been examined for biodiesel
synthesis, mostly in transesterification reaction. CaO-ZrO2 [1],
Mg-Al [25–28], Na2O/NaX [16] and MgAl2O4 spinel [29] are some
of traditional heterogeneous solid base catalysts that have been
used in transesterification reaction. Spinels comprise an important
class of oxide materials which have many potential catalytic appli-
cations [29–31]. Among other advantages and properties of spinels,
one can refer to insignificant deactivation of catalysts by leaching
in spinel-involved processes [5] and substitution of large percent-
ages of one or both of the spinel components with other groups
with no modification of the crystal structure [32]. Studied as a cat-
alyst or catalyst support in chemicals production [33–35], magne-
sium aluminium spinel (MgAl2O4) has been successfully used in
methanolysis of soybean oil [29].
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The physicochemical properties and catalytic performance of a
synthesized nanocatalyst could be affected by synthesis method
[36–38]. In the present study, magnesium aluminium spinel was
prepared via combustion method which has the advantage of being
quick and easy synthesis method, as well as enlarged pores forma-
tion in the catalyst. These benefits make this catalyst an economic
one for the reaction of biodiesel production that the solution in the
reaction comprises large molecules of triglycerides. MgAl2O4 spi-
nel, due to its distinguished properties such as thermal resistance,
high surface area and porosity is very practical, especially for bio-
diesel production which was synthesized by the combustion
method and for the first time used for biodiesel reaction in this
study. The synthesized MgAl2O4 spinel was then used as a hetero-
geneous catalyst support on which MgO (as the active phase) was
deposited before further testing the resultant catalyst in transes-
terification reactions. Effect of fuel ratio on combustion synthesis
was investigated to find an optimal catalyst.
2. Materials and methods

2.1. Materials

For the synthesis of nanostructured MgO/MgAl2O4 catalysts
using combustion method, magnesium nitrate (Mg(NO3)2�6H2O;
Merck, 99%), aluminium nitrate (Al(NO3)3�9H2O; Merck, 99%) and
urea (NH2CONH2; Romil, 99.5%) were used without further purifi-
Al(NO3)3.9H2O
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Fig. 1. Urea-nitrate combustion synthesis of MgO/MgAl2O4 nanocatalyst with
various fuel ratios.
cation. For the production of biodiesel, sunflower oil (acid content
<0.3 mg KOH/g) and methanol (Merck, 99.9%) were used as reac-
tants of transesterification.
2.2. Nanocatalysts preparation and procedure

A schematic flowchart of the steps involved in the synthesis of
MgO/MgAl2O4 nanocatalysts is represented in Fig. 1. As shown in
the figure, in the first step, MgAl2O4 was prepared by a simple solu-
tion combustion method. For the synthesis of 4 g of MgAl2O4, at
first, approximately 29 mmol of Mg(NO3)2�6H2O along with
57 mmol Al(NO3)3�9H2O were dissolved into 70 ml of deionized
water. After 20 min of mixing the solution, various molar ratios
of urea (0.5–2 times of the stoichiometric ratio) were added to
the solution. The mixture was heated to 70 �C and then stirred with
a magnet stirrer for about 3 h until a transparent gel was obtained.
The gel was placed in an electric furnace at 350 �C where it
released white smoke (i.e. combustion started) in a few minutes,
with the time to start the combustion process depending on the
fuel ratio in the mixture. After the reaction, the obtained low-
density white foam was crushed in a ceramic mortar. In the second
step, the MgO/MgAl2O4 nanocatalysts were prepared by the
impregnation method using an aqueous solution of Mg(NO3)2�6H2-
O. For all of the samples, 10 wt.% MgO was loaded on the support
(MgAl2O4); for this purpose, a solution was prepared considering
Fig. 2. XRD patterns of synthesized MgO/MgAl2O4 nanocatalysts with various fuel
ratios: (a) FR = 0.5, (b) FR = 1, (c) FR = 1.5 and (d) FR = 2.
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the required amount of magnesium nitrate hexahydrate. Then, the
support was added to the solution and the mixture was stirred on a
magnet stirrer while heated at 70 �C for 4 h. Thereupon, the mix-
ture was dried at 110 �C for 24 h before being calcined at 550 �C
for 4 h.

2.3. Nanocatalysts characterization techniques

The synthesized samples were characterized by XRD, FESEM,
EDX, TGA, BET-BJH and FTIR techniques. In order to study crystal-
lographic properties of the nanocatalysts, they were subject to XRD
analysis on a D-5000 diffractometer (Germany, Siemens, Cu Ka
radiation, 0.154056 nm) operated in the range of 2h = 10–90�. Sur-
face morphologies of the samples were investigated by a FESEM
(Field Emission Scanning Electron Microscopy) on MIRA3 FEG-
SEM (Czech Republic, TESCAN) analyser. For surface compositional
analysis, EDX-Dot mapping analysis was performed by a VEGA II
Detector (Czech Republic, TESCAN). TGA analysis was used to
detect incomplete decomposition of nitrate and urea (as the fuel)
during the combustion synthesis. The TGA analysis was performed
using a Perkin Elmer Pyris Diamond apparatus in which a flow of
air was provided; the air was heated from 50 to 600 �C at a heating
rate of 10 �C min�1. In an attempt to determine surface area of the
nanocatalysts, X Quanta chrome chembet-3000 was used for BET
analysis. Furthermore, BJH method (Barrett-Joyner-Halenda) was
utilized to obtain relative pore size and volume in a wide range
of pore size distributions. Using FTIR technique, infrared spectrum
of absorption/desorption of the samples were captured by a TEN-
SOR 27 (Germany, Brucker) which was operated in the range of
400–4000 cm�1 via K-Br pellet method.

2.4. Experimental setup for catalytic performance test

A stainless-steel reactor with an internal Teflon container of
100 cm3 capacity was used for the transesterification reaction.
The reactor was covered by a controllable heater clamp which
was placed on a magnetic stirrer. All the reactions were per-
formed under the same conditions: reaction temperature = 110 �-
C, reaction time = 3 h, methanol-to-oil molar ratio = 12, and
catalyst concentration = 3 wt.%; the conditions were adopted
from other works done to find an optimal catalyst for similar sit-
uations, as well as criteria for evaluating optimal sample with
similar catalysts [26–28]. The products of transesterification
(FAMEs) were analysed by a gas chromatograph (GC Chrom, Teif
Gostar Faraz, Iran). The GC was equipped with a FID (Flame
Ionization Detector) and a SUPRAWAX-280 column (Spain,
Teknokroma). Injection was done in split mode (1/100) with
the injector and detector adjusted at 260 �C. Samples (1 ll) were
Table 1
Structural properties of synthesized MgO/MgAl2O4 nanocatalyst.

Nanocatalyst MgO
(wt.%)

MgAl2O4

(wt.%)
Fuel ratio (to
stoichiometric)

Surface area
(m2/g)

MgO/MgAl2O4

(FR = 0.5)
10 90 0.5 136.8

MgO/MgAl2O4

(FR = 1)
10 90 1 43.3

MgO/MgAl2O4

(FR = 1.5)
10 90 1.5 60.6

MgO/MgAl2O4

(FR = 2)
10 90 2 57.7

a Relative crystallinity: XRD relative peak intensity.
b Crystallite size estimated by Scherre’s equation.
c Crystallite phase: Cubic (JCPDS: 01-077-2364, 2h = 37.0, 43.0, 62.4, 74.8 and 78.7).
d Crystallite phase: Cubic (JCPDS: 00-001-1157, 2h = 19.2, 31.6, 37.3, 45.3, 60.0 and 66
injected and hydrogen was used as the carrier gas by inlet pres-
sure of 14 psi for the analysis. To ensure accuracy of the results,
the tests were undertaken in triplicate.

3. Results and discussions

3.1. Nanocatalysts characterization

3.1.1. XRD analysis
Fig. 2 shows the corresponding XRD patterns to MgO/MgAl2O4

samples prepared by combustion synthesis method with four dif-
ferent fuel ratios. Comparing the diffraction peaks with reference
patterns, it was clearly observed that the peaks at 2h = 19.2, 31.6,
37.3, 45.3, 60.0 and 66.2 (JCPDS: 00-001-1157) were related to
cubic phase of MgAl2O4 and the peaks at 2h = 37.0, 43.0, 62.4,
74.8 and 78.7 (JCPDS: 01-077-2364) were attributed to cubic phase
of MgO, indicating successful formation of the crystals. It is worth
noting that comparison of XRD patterns showed no similarity
between the synthesized nanocatalysts and hydrotalcite phase
(JCPDS No 00-022-0700) which has its main peaks at 2h = 11.2,
22.8, 34.5, 38.6, 45.5, 46.5, 60, 61.9 and 65.8. Therefore, no hydro-
talcite formation can be detected in fabricated samples. According
to the corresponding reference pattern to alumina (JCPDS: 00-004-
0880), alumina was not observed in the synthesized nanocatalysts.
As shown in Table 1, relative crystallinity of samples synthesized
with fuel ratios of 0.5, 1, 1.5 and 2 were found to be 5, 30, 55
and 100, respectively, showing the enhancement of the crys-
tallinity by increasing the fuel ratio. Moreover, calculated by Scher-
rer equation [39], the crystallite size of samples exhibited similar
behaviour to those of relative crystallinity.

3.1.2. FESEM analysis
Fig. 3 shows the surface morphology of the synthesized cata-

lysts (MgO/MgAl2O4) with different fuel ratios, as captured by
FESEM analysis. In Fig. 3(a–d), it is clear that, pore diameters
increase by increasing the fuel ratio from 0.5 to 2. This is due to
increased combustion exhausts emitted within a very short period
of time [40,41]. Particles of the catalyst prepared with a fuel ratio
of 0.5 (Fig. 3(a)) were smaller than those of the other catalysts,
probably due to the lack of crystal growth in the absence of suffi-
cient heat of combustion, as discussed in the section on XRD anal-
ysis. Also, such tiny particles were likely to increase surface area, as
mentioned in the section on BET analysis. Although particle
agglomeration was observed in all cases, the agglomerations were
different in their pore structures. Fig. 3(c) and (d) shows the syn-
thesized samples with fuel ratios of 1.5 and 2; the samples exhibit
a honeycomb structure with relatively large pore diameters, which
is in agreement with the BET analysis results. Accordingly, these
Pore volume
(cm3/g)

Mean pore size
(nm)

Relative
crystallinitya

Crystallite sizeb

(nm)

MgAl2O4 MgOc MgAl2O4
d

0.1794 5.6 5.5 – –

0.0445 4.3 46.1 12.6 29.2

0.0787 6.3 55.8 – 30.6

0.0691 5.8 100 16.5 33.5

.2).
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(b) MgO/MgAl2O4 (FR=1)

(c) MgO/MgAl2O4 (FR=1.5)

Fig. 3. FESEM images of synthesized MgO/MgAl2O4 nanocatalysts with various fuel ratios: (a) FR = 0.5, (b) FR = 1, (c) FR = 1.5 and (d) FR = 2.
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catalysts seem to be more appropriate for biodiesel production
[42,43]. Fig. 4 indicates the distribution of surface particle sizes
[44] for the synthesized catalyst with a fuel ratio of 1.5. Minimum
and maximum particle sizes were 6.8 and 30.9 nm, respectively,
with an average size of 15.9 nm. For all crystal sizes, the results
were consistent with the results of XRD analysis. In addition, the
analysis showed the appropriate distribution of particles in the
range of 10–20 nm.
3.1.3. EDX analysis
The results of EDX analysis of MgO/MgAl2O4 samples synthe-

sized with different fuel ratios (from 0.5 to 2) are shown in
Fig. 5. It can be seen from the EDX analysis results that, Al, Mg,
and O elements exhibited proper distributions with no agglomer-
ated particles – very important parameters when it comes to cat-
alytic activity [45]. The results further revealed that, at the end
of the catalyst synthesis process, no impurities (including fuel (car-
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bon) and nitrate precursors (nitrogen)) remained. Fig. 6 shows the
percentages of the Al, Mg and O elements, as obtained by EDX anal-
ysis of the synthesized catalysts, along with the corresponding
original percentages in the initial gel. Considering the original per-
centages, the obtained percentages of the elements in all of the
synthesized catalysts were acceptable.

3.1.4. TGA analysis
Fig. 7 shows TGA analysis of the synthesized samples with dif-

ferent fuel ratios. The analysis was used for the detection of resid-
ual fuel from the combustion and residual nitrate precursors. For
all samples, a large loss of weight was observed at temperatures
from 100 to 250 �C; the loss was attributed to the evaporation
and removal of physically adsorbed water. The slight loss of weight
(less than 1%) at temperatures from 250 to 400 �C was corre-
sponded to the decomposition of magnesium and aluminium
nitrates. Such a small loss of weight within this temperature region
indicated a suitable precursor decomposition during the combus-
tion synthesis, so that an insignificant weight loss was observed
for all samples except for the MgO/MgAl2O4 (FR = 0.5) when heated
to higher than 400 �C. The reduction in this temperature region
was due to the elimination of remaining urea in the sample
because of low combustion temperature during the synthesis of
the MgO/MgAl2O4 (FR = 0.5) catalyst.

3.1.5. BET analysis
The specific surface area, total pore volume and mean pore

diameter of the prepared nanocatalysts using different fuel ratios
were calculated from the isotherm data and are listed in Table 1
with their adsorption/desorption isotherms depicted in Fig. 8. As
specified in the table, the sample synthesized with a fuel ratio of
0.5 showed the largest surface area and pore volume due to incom-
plete combustion; It should be noted that lower fuel amount of the
sample with fuel ratio of 0.5 led to insufficient heat of reaction and
incomplete decomposition of Mg and Al precursors. Therefore, the
amorphous phase of these materials formed (according to the XRD
analysis). Thus, the formed particles in this sample were smaller
than crystalized samples which means they possessed higher sur-
face area, and this surface area is an exception. However, this
parameter increased by increasing the fuel ratio for other samples.
It could be because of better combustion process during catalyst
synthesis and large volume of the combustion exhaust. By increas-
ing of the fuel ratio to 1, the heat of combustion increased to a suf-
ficient amount which lead to better and complete decomposition
of precursors than previous sample (fuel ratio 0.5) and cause for-
mation of MgAl2O4 crystals. Moreover, by increasing of this ratio
to 1.5, the heat of combustion and also exhaust gases increased
more than before which amended the synthesis process condition
and cause far higher surface area. Ultimately, by changing this ratio
to 2, according to highest heat of combustion and exhaust gases,
the crystals size extremely increased, so, as a result, there is a
decline in surface area. Mean pore diameter over all samples was
obtained to be over 2 nm by the BJH method, proving all catalysts
to be mesoporous. Also, according to Fig. 9, a major portion of pore
diameter distribution is concentrated in the range of 4–7 nm for all
catalysts. There are reports indicating that, mesoporous catalysts
with pore diameters of larger than 3.5 nm are appropriate for bio-
diesel production [42,43]. Therefore, compared to other samples,
the samples prepared with fuel ratios of 1.5 and 2 were expected
to convert larger amounts of triglycerides to ester. In addition, as
shown in Fig. 8, the corresponding isotherms to all samples were
classified as type IV and type H1 isotherm hysteresis loops, indicat-
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ing the pores to be of cylindrical form – seemingly an appropriate
structure for the entry of large oil molecules.

3.1.6. FTIR analysis
FTIR spectra of the prepared supports (MgAl2O4) using various

fuel ratios were captured in the range of 400–4000 cm�1 and illus-
trated in Fig. 10. The broad bands at around 1640 and 3489 cm�1

attributed to OAH stretching and bending modes of the water
adsorbed by the surface of MgAl2O4, respectively [46–48]. The
peaks at around 2924 and 2856 cm�1 appointed to CAH stretching
vibrations coming from un-combusted urea during the synthesis
[49,50]. The peaks appearing at 878, 1387 and 1514 cm�1 related
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to the vibration of NO3
� groups [41,50,51]. As specified in the figure,

for the prepared sample with a fuel ratio of 0.5, the peaks are shar-
per than those of other samples, proving incomplete combustion
and lack of heat for the decomposition of the nitrate precursors.
The strong absorption peaks within the range of 400–800 cm�1

(469, 518 and 699 cm�1) for the samples synthesized with fuel
ratios of 1, 1.5 and 2 could be corresponded to the [AlO6] groups
and the lattice vibration of MgAO stretching. These indicated the
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3.2. Study of catalytic performance in biodiesel production

Continuing with the research, performance of the prepared
nanocatalysts in biodiesel production was studied under the same
reaction conditions (reaction temperature = 110 �C, reaction
time = 3 h, methanol-to-oil molar ratio = 12, and catalyst concen-
tration = 3 wt.%). Transesterification of sunflower oil was per-
formed by the four prepared samples with different fuel ratios.
The conversion of produced biodiesel was obtained by GC analysis
(Fig. 11). As seen in the figure, the conversion increased by increas-
ing the fuel ratio, so that the difference between the corresponding
conversions to the synthesized catalysts with fuel ratios of 0.5 and
1 was found to be about 50%. This difference is probably due to
incomplete formation of crystals in the MgO/MgAl2O4 (FR = 0.5),
as explained in the section on XRD analysis. The difference
between the corresponding conversions to the prepared MgO/
MgAl2O4 samples with fuel ratios of 1 and 1.5 was as low as about
15%. This difference is likely due to increased pore diameter and
surface area [43]. As can be seen in Fig. 11, by increasing the fuel
ratio from 1.5 to 2 in the synthesized samples, no significant
change is seen in the conversion (95.7 and 94.8%, respectively).
According to Table 1, average pore diameters and surface areas of
MgO/MgAl2O4 (FR = 1.5) and MgO/MgAl2O4 (FR = 2) are almost
identical, proving the important role played by pore diameter in
the transesterification reaction.

To sum up, a fuel ratio of 1.5 can be considered as the optimal
ratio for the synthesis of the catalyst. Accordingly, the MgO/MgAl2-
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Fig. 9. Pore size distribution of synthesized MgO/MgAl2O4 nanocatalysts wi
O4 (FR = 1.5) sample was selected and compared with similar cat-
alysts. In Table 2, a number of similar catalysts in the literature
are compared against the optimal catalyst in the present work,
with the biodiesel reaction conditions included. Although the reac-
tion conditions used in this work are milder than those of other
works, higher conversion were obtained in the current work; this
might be due to suitable structure of the optimal catalyst with
enlarged pores. Also our study have more advantages than the
researches which were reported in the literature such as using
lower MgO amount as active phase in synthesized catalyst, far sim-
pler and swifter synthesis method (combustion method) that will
help us diminish catalyst preparation time and improving the pro-
cess conditions. In total, the mentioned features make the prepared
catalyst an appropriate alternative for biodiesel production pro-
cess, which can contribute to the economy of the process consider-
ing the required mild reaction conditions.

3.3. Reusability

Reusability represents one of the most important features of the
catalysts to be used in the process of biodiesel production. Here-
upon, reusability of the optimal catalyst was evaluated under the
reaction conditions. Following each reaction, the used catalyst
was separated from the products and washed for several times
with methanol before being placed in an oven at 110 �C for 24 h
after which time it was ready to be reused for the next run of
the transesterification reaction. The results of the reusability of
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the optimal catalyst are shown in Fig. 12. Based on the results, the
optimal catalyst showed about 5% and 9% reductions in conversion
at the second and third runs of the reaction, respectively (91% and
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Fig. 11. Influence of fuel ratio on catalytic performance of synthesized MgO/
MgAl2O4 nanocatalysts with various fuel ratios.
81.9%, respectively). In the fourth to sixth runs, no significant
change in the conversion was observed compared to the third
run. The reduction in the conversion can cause some leaching of
the active phase (MgO) from the support (MgAl2O4) [2,13,54]. Dur-
ing the first run a small amount of MgO as active phase, which
were not strongly fastened to MgAl2O4 surface, were readily lea-
ched into the reaction solution and this reduction in active phase
amount on the support surface was a reason for diminished con-
version until run 3. From run 3 onwards, the remained active phase
on support material failed to leach easily to the reaction solution
than previous runs (run 1 and 2). Accordingly, following the third
run, no more leaching of the active phase has taken place, leaving
the conversion unchanged.
4. Conclusions

As a base catalyst for biodiesel production, MgAl2O4 spinel was
successfully synthesized by combustion method with MgO (as the
active phase) deposited on the catalyst surface. Analysing the effect
of fuel ratio on the combustion synthesis of MgAl2O4, it was
revealed that, the synthesized base catalyst with a fuel ratio of
1.5 was of the best specifications for biodiesel production process.
The optimal catalyst had an average pore diameter and surface



Table 2
Reaction condition comparison and catalytic performance of different Mg-Al mixed oxide catalysts appraised for the biodiesel production.

Catalyst Reaction condition Biodiesel yield (Y) or conversion (X) % Reference

Temperature (�C) MeOH:Oil molar ratio Amount of catalyst (% wt/wt) Time (h)

Mg-Al mixed oxide 140 24:1 – 1.54 Y = 77 [55]
Mg-Al mixed oxide 117 24:1 4 8 Y = 78 [26,28]
Mg-Al mixed oxide 115 14:1 4 2 X = 95.4 [27]
Mg-Al mixed oxide 160 12:1 6 6 Y = 90 [25]
Mg-Al-CO3 mixed oxide 200 6:1 1 3 X = 99 [56]
Al/(Mg + Al) mixed oxide 230 13:1 5 1 X = 90 [54]
MgO/MgAl2O4 110 12:1 3 3 X = 95.7 This work
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Fig. 12. Reusability of MgO/MgAl2O4 (FR = 1.5) nanocatalyst toward biodiesel
production from sunflower oil.
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area of 6.3 nm and 60.6 m2/g, respectively; indeed, the specifica-
tions are much suitable for biodiesel production process. The opti-
mum catalyst showed superior efficiency (95.7%) along with slight
loss of reusability compared to other similar catalysts studied in
related literatures under the same reaction conditions. Successfully
used in biodiesel production reaction, the prepared optimal MgO/
MgAl2O4 catalyst represented an efficient and cost-effective cata-
lyst which can be readily synthesized. Future researches may
investigate the catalyst reusability and mild reaction conditions,
so as to achieve more economical production of biodiesel.
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